- Title
- A Perron-Frobenius type result for integer maps and applications
- Creator
- Giladi, Ohad; Rüffer, Björn S.
- Relation
- ARC.DP160101537 http://purl.org/au-research/grants/arc/DP160101537 & DP160102138 http://purl.org/au-research/grants/arc/DP160102138
- Relation
- Positivity Vol. 23, Issue 3, p. 545-570
- Publisher Link
- http://dx.doi.org/10.1007/s11117-018-0624-z
- Publisher
- Birkhaeuser Science
- Resource Type
- journal article
- Date
- 2019
- Description
- It is shown that for certain maps, including concave maps, on the d-dimensional lattice of positive integer points, 'approximate' eigenvectors can be found. Applications in epidemiology as well as distributed resource allocation are discussed as examples.
- Subject
- Perron-Frobenius theory; integer maps; concave maps; Hilbert metric
- Identifier
- http://hdl.handle.net/1959.13/1458545
- Identifier
- uon:45451
- Identifier
- ISSN:1385-1292
- Language
- eng
- Reviewed
- Hits: 861
- Visitors: 858
- Downloads: 0
Thumbnail | File | Description | Size | Format |
---|